Что такое TLS-рукопожатие и как оно устроено

Что такое TLS-рукопожатие и как оно устроено Сертификаты

Что такое ssl и что такое tls?

SSL — Secure Socket Layer, уровень защищенных сокетов. TLS — Transport Layer Security, безопасность транспортного уровня. SSL является более ранней системой, TLS появился позднее и он основан на спецификации SSL 3.0, разработанной компанией Netscape Communications.

Тем не менее, задача у этих протоколов одна — обеспечение защищенной передачи данных между двумя компьютерами в сети Интернет. Такую передачу используют для различных сайтов, для электронной почты, для обмена сообщениями и много еще для чего. В принципе, можно передавать любую информацию таким образом, об этом чуть ниже.

Безопасная передача обеспечивается при помощи аутентификации и шифрования передаваемой информации. По сути эти протоколы, TLS и SSL, работают одинаково, принципиальных различий нет. TLS, можно сказать, является преемником SSL, хотя они и могут использоваться одновременно, причем даже на одном и том же сервере.

SSL 1.0 — никогда не публиковалсяSSL 2.0 — февраль 1995 годаSSL 3.0 — 1996 годTLS 1.0 — январь 1999 годаTLS 1.1 — апрель 2006 годаTLS 1.2 — август 2008 года

Организация взаимодействия клиента и сервера, основанного исключительно на доверии к удостоверяющему центру

Теперь нужно настроить клиент и сервер так, чтобы они доверяли бы только удостоверяющему центру. Сделать это можно, импортировав сертификат удостоверяющего центра в хранилища TrustStore клиента и сервера.

Сделаем это, выполнив на клиенте следующую команду:

keytool -v -importcert -file root-ca/root-ca.pem -alias root-ca -keystore client/src/test/resources/truststore.jks -storepass secret -noprompt

На сервере выполним такую команду:

keytool -v -importcert -file root-ca/root-ca.pem -alias root-ca -keystore shared-server-resources/src/main/resources/truststore.jks -storepass secret -noprompt

В хранилищах TrustStore всё ещё хранятся собственные сертификаты клиента и сервера. Эти сертификаты нужно удалить.

Выполним на клиенте такую команду:

keytool -v -delete -alias server -keystore client/src/test/resources/truststore.jks -storepass secret

Вот — команда для сервера:

keytool -v -delete -alias client -keystore shared-server-resources/src/main/resources/truststore.jks -storepass secret

Если снова запустить клиент — можно видеть успешное прохождение теста. А это значит, что клиент и сервер успешно обмениваются данными, используя сертификаты, подписанные удостоверяющим центром.

Запуск сервера


Для того чтобы организовать работу сервера — нам понадобится следующее:

  1. Java 11
  2. Maven 3.5.0
  3. Eclipse, Intellij IDEA (или любой другой текстовой редактор вроде VIM)
  4. Доступ к терминалу
  5. Копия этого проекта

Если вы хотите приступить к экспериментам и при этом ничего не устанавливать — можете

вышеупомянутый проект в онлайновой среде разработки Gitpod.

В данном проекте содержится Maven-обёртка, поэтому запустить его можно и не устанавливая Maven. Тут будут приведены сведения и о стандартных командах, рассчитанных на mvn, и о командах, ориентированных на использование Maven-обёртки.

Если вы хотите запустить этот проект с использованием Java 8 — вы можете переключиться на более старую его версию с использованием нижеприведённой команды.

git checkout tags/java-8-compatible

При работе с этой версией проекта рекомендовано следовать инструкциям, подготовленным специально для него. Найти их можно

Сервер можно привести в рабочее состояние, вызвав метод main класса App или выполнив следующую команду в корневой директории проекта:

cd server/ && mvn spring-boot:run

Вот команда, рассчитанная на Maven-обёртку:

cd server-with-spring-boot/ && ./../mvnw spring-boot:run

Создание файла запроса на подпись сертификата


Для того чтобы подписать сертификат — нужен .csr-файл (Certificate Signing Request, файл запроса на подпись сертификата). Создать его можно с помощью особой команды.

Вот её вариант для сервера:

keytool -v -certreq -file shared-server-resources/src/main/resources/server.csr -keystore shared-server-resources/src/main/resources/identity.jks -alias server -keypass secret -storepass secret -keyalg rsa

Вот — эта команда для клиента:

keytool -v -certreq -file client/src/test/resources/client.csr -keystore client/src/test/resources/identity.jks -alias client -keypass secret -storepass secret -keyalg rsa


Такой файл нужен удостоверяющему центру для подписи сертификата. Следующий шаг нашей работы заключается в подписании сертификата.

Подписание сертификата с помощью запроса на подпись сертификата

Вот соответствующая команда для клиента:

keytool -v -gencert -infile client/src/test/resources/client.csr -outfile client/src/test/resources/client-signed.cer -keystore root-ca/identity.jks -storepass secret -alias root-ca -ext KeyUsage=digitalSignature,dataEncipherment,keyEncipherment,keyAgreement -ext ExtendedKeyUsage=serverAuth,clientAuth

Вот команда для сервера:

keytool -v -gencert -infile shared-server-resources/src/main/resources/server.csr -outfile shared-server-resources/src/main/resources/server-signed.cer -keystore root-ca/identity.jks -storepass secret -alias root-ca -ext KeyUsage=digitalSignature,dataEncipherment,keyEncipherment,keyAgreement -ext ExtendedKeyUsage=serverAuth,clientAuth -ext SubjectAlternativeName:c=DNS:localhost,IP:127.0.0.1

Аутентификация клиента (двусторонний TLS)

Следующий шаг нашей работы заключается такой настройке сервера, чтобы он требовал бы аутентификации клиентов. Благодаря этим настройкам мы принудим клиентов идентифицировать себя. При таком подходе сервер тоже сможет проверить подлинность клиента, и то, входит ли он в число доверенных сущностей. Включить аутентификацию клиентов можно, воспользовавшись свойством

client-auth

, сообщив серверу о том, что ему нужно проверять клиентов.

Приведём файл сервера application.yml к такому виду:

server:
  port: 8443
  ssl:
    enabled: true
    key-store: classpath:identity.jks
    key-password: secret
    key-store-password: secret
    client-auth: need

Если после этого запустить клиент, то он выдаст следующее сообщение об ошибке:

javax.net.ssl.SSLHandshakeException: Received fatal alert: bad_certificate

Это указывает на то, что клиент не обладает подходящим сертификатом. Точнее — у клиента пока вообще нет сертификата. Поэтому создадим сертификат следующей командой:

keytool -v -genkeypair -dname "CN=Suleyman,OU=Altindag,O=Altindag,C=NL" -keystore client/src/test/resources/identity.jks -storepass secret -keypass secret -keyalg RSA -keysize 2048 -alias client -validity 3650 -deststoretype pkcs12 -ext KeyUsage=digitalSignature,dataEncipherment,keyEncipherment,keyAgreement -ext ExtendedKeyUsage=serverAuth,clientAuth


Нам ещё нужно создать TrustStore для сервера. Но, прежде чем создавать это хранилище, нужно иметь сертификат клиента. Экспортировать его можно так:

keytool -v -exportcert -file client/src/test/resources/client.cer -alias client -keystore client/src/test/resources/identity.jks -storepass secret -rfc

Теперь создадим TrustStore сервера, в котором будет сертификат клиента:

keytool -v -importcert -file client/src/test/resources/client.cer -alias client -keystore shared-server-resources/src/main/resources/truststore.jks -storepass secret -noprompt

Мы создали для клиента дополнительное хранилище ключей, но клиент об этом не знает. Сообщим ему сведения об этом хранилище. Кроме того, клиенту нужно сообщить о том, что включена двусторонняя аутентификация.

Приведём файл application.yml клиента к такому виду:

client:
  ssl:
    one-way-authentication-enabled: false
    two-way-authentication-enabled: true
    key-store: identity.jks
    key-password: secret
    key-store-password: secret
    trust-store: truststore.jks
    trust-store-password: secret

Сервер тоже не знает о только что созданном для него TrustStore. Приведём его файл

application.yml

к такому виду:

server:
  port: 8443
  ssl:
    enabled: true
    key-store: classpath:identity.jks
    key-password: secret
    key-store-password: secret
    trust-store: classpath:truststore.jks
    trust-store-password: secret
    client-auth: need

Если снова запустить клиент — можно будет убедиться в том, что тест завершается успешно, и что клиент получает данные от сервера в защищённом виде.

Про сертификаты:  Международное признание – Академия «Русского Регистра»

Примите поздравления! Только что вы настроили двусторонний TLS!

Замена неподписанного сертификата подписанным

В хранилище идентификационных данных сервера и клиента всё ещё хранится неподписанный сертификат. Сейчас можно заменить его на подписанный. У инструмента

keytool

есть одна не вполне понятная особенность. А именно — он не позволяет напрямую импортировать в хранилище подписанный сертификат. Если попытаться это сделать — будет выведено сообщение об ошибке. Сертификат, подписанный удостоверяющим центром, должен быть представлен в файле

identity.jks

Экспортируем подписанный сертификат:

keytool -v -exportcert -file root-ca/root-ca.pem -alias root-ca -keystore root-ca/identity.jks -storepass secret -rfc

Выполним на клиенте следующие команды:

keytool -v -importcert -file root-ca/root-ca.pem -alias root-ca -keystore client/src/test/resources/identity.jks -storepass secret -noprompt
keytool -v -importcert -file client/src/test/resources/client-signed.cer -alias client -keystore client/src/test/resources/identity.jks -storepass secret
keytool -v -delete -alias root-ca -keystore client/src/test/resources/identity.jks -storepass secret

На сервере выполним такие команды:

keytool -v -importcert -file root-ca/root-ca.pem -alias root-ca -keystore shared-server-resources/src/main/resources/identity.jks -storepass secret -noprompt
keytool -v -importcert -file shared-server-resources/src/main/resources/server-signed.cer -alias server -keystore shared-server-resources/src/main/resources/identity.jks -storepass secret
keytool -v -delete -alias root-ca -keystore shared-server-resources/src/main/resources/identity.jks -storepass secret

Dh-аутентификация

Когда используются Диффи-Хеллман и ECDSA/RSA, аутентификация и обмен ключами разворачиваются бок о бок. И это возвращает нас к ключам и вариантам их использования. Открытый/закрытый ключ RSA используется как для обмена ключами, так и для аутентификации. В DH ECDSA/RSA асимметричная пара ключей используется только для этапа цифровой подписи или аутентификации.

Когда клиент получает сертификат, он всё ещё проводит стандартные проверки:

  • проверяет подпись на сертификате,
  • цепочку сертификатов,
  • срок действия,
  • статус отзыва.

Но владение закрытым ключом подтверждается по-другому. Во время обмена ключами TLS-рукопожатия (шаг 4) сервер использует свой закрытый ключ для шифрования случайного числа клиента и сервера, а также свой DH-параметр. Он действует как цифровая подпись сервера, и клиент может использовать связанный открытый ключ для проверки, что сервер является законным владельцем пары ключей.

Rsa-аутентификация

Процесс RSA-аутентификации связан с процессом обмена ключами. Точнее обмен ключами является частью процесса аутентификации.

Когда клиенту предоставляется SSL-сертификат сервера, он проверяет несколько показателей:

  • цифровую подпись с использованием открытого ключа;
  • цепочку сертификатов, чтобы убедиться, что сертификат происходит от одного из корневых сертификатов в хранилище доверенных сертификатов;
  • срок действия, чтобы убедиться, что он не истёк;
  • статус отзыва сертификата.

Если все эти проверки прошли, то проводится последний тест — клиент шифрует pre-master secret с помощью открытого ключа сервера и отправляет его. Любой сервер может попытаться выдать любой SSL/TLS-сертификат за свой. В конце концов, это общедоступные сертификаты. А так клиент может провести аутентификацию сервера, увидев закрытый ключ «в действии».

Таким образом, если сервер может расшифровать pre-master secret и использовать его для вычисления сессионного ключа, он получает доступ. Это подтверждает, что сервер является владельцем используемой пары из открытого и закрытого ключа.

Аутентификация в tls-рукопожатии

Исторически двумя основными вариантами обмена ключами являются RSA и Диффи-Хеллман (DH), в наши дни DH часто ассоциируется с эллиптическими кривыми (ECDH). Несмотря на некоторые основные сходства, между этими двумя подходами к обмену ключами есть фундаментальные различия.

Иными словами, TLS-рукопожатие RSA отличается от TLS-рукопожатия ECDH.

RSA использует простую факторизацию и модульную арифметику. Большие простые числа требуют много ресурсов процессора при вычислениях и их сложно подобрать.

Диффи-Хеллмана иногда называют экспоненциальным обменом ключами, что указывает на возведение в степень (в дополнение к модульной арифметике), но на самом деле сам DH вообще ничего не шифрует и не дешифрует. Поэтому называть его «методом шифрования» вместо «математического обоснования» может быть немного неверно.

Небольшой экскурс в историю может пояснить этот момент.

Ещё в 1976 году Уитфилд Диффи и Мартин Хеллман создали протокол обмена ключами, основанный на работе Ральфа Меркля, чьё имя, по мнению обоих, должно также присутствовать в названии протокола.

Что такое TLS-рукопожатие и как оно устроено

Они пытались решить проблему безопасного обмена ключами по незащищённому каналу, даже если злоумышленник прослушивает его. У них получилось, но был один серьёзный недостаток: обмен ключами DH не включал в себя проверку подлинности, поэтому не было возможности проверить сторону на другом конце соединения.

Это можно считать рождением криптографии с открытым ключом и ИОК. Вскоре после того, как Диффи и Хеллман представили свой протокол обмена ключами, были завершены самые ранние версии криптосистемы RSA. Диффи и Хеллман создали концепцию шифрования с открытым ключом, но ещё не придумали саму функцию одностороннего шифрования.

Именно Рон Ривест (R в RSA) создал концепцию, которая в итоге стала криптосистемой RSA.

Во многих отношениях RSA является духовным преемником DH. Он осуществляет:

  • генерацию ключей;
  • обмен ключами;
  • шифрование;
  • дешифрование.

Таким образом, RSA является более функциональным алгоритмом, который может обрабатывать как обмен ключами, так и цифровые подписи, то есть производить аутентификацию в дополнение к безопасному обмену ключами. Поэтому у RSA ключи больше: должна быть обеспечена достаточная безопасность для цифровой подписи.

В то время как RSA осуществляет аутентификацию и обмен ключами, Диффи-Хеллман только облегчает обмен ключами. Существует четыре распространённых варианта семейства DH:

  • Диффи-Хеллман (DH);
  • эфемерный (краткосрочный) Диффи-Хеллман (DHE);
  • эллиптическая кривая Диффи-Хеллмана (ECDH);
  • эллиптическая кривая эфемерного Диффи-Хеллмана (ECDHE).

Опять же, Диффи-Хеллман сам по себе ничего не аутентифицирует. Его нужно использовать в паре с алгоритмом цифровой подписи. Так, например, если вы использовали ECDH или ECDHE, большинство шифронаборов будут сопряжены с алгоритмом цифровой подписи эллиптической кривой (ECDSA) или RSA.

Аутентификация в рукопожатии tls 1.3

В TLS 1.3 аутентификация и цифровые подписи всё ещё играют важную роль, но они были исключены из шифронаборов для упрощения согласования. Они реализованы на стороне сервера и используют несколько алгоритмов, поддерживаемых сервером, из-за их безопасности и повсеместного распространения. В TLS 1.3 разрешены три основных алгоритма подписи:

  • RSA (только подпись),
  • алгоритм цифровой подписи эллиптической кривой (ECDSA),
  • алгоритм цифровой подписи Эдвардса (EdDSA).

В отличие от рукопожатия TLS 1.2, аутентификационная часть рукопожатия TLS 1.3 не связана с самим обменом ключами. Скорее она обрабатывается параллельно с обменом ключами и аутентификацией сообщений.

Вместо запуска симметричной схемы MAC для проверки целостности рукопожатия, сервер подписывает весь хеш расшифровки, когда возвращает «Server Hello» со своей частью общего ключа.

Клиент получает всю информацию, передающуюся с «Server Hello», и выполняет стандартную серию проверок подлинности сертификата SSL/TLS. Она включает в себя проверку подписи на сертификате, а затем проверку на соответствие подписи, которая была добавлена в хеш расшифровки.

Совпадение подтверждает, что сервер владеет секретным ключом.

Про сертификаты:  Подпись математически корректна но нет доверия. Проблемы с сертификатами ключей эп, выпущенными аккредитованными уц. Не удается найти сертификат и закрытый ключ для расшифровки. В связи с этим использование данного сертификата невозможно

Безопасность

С самого начала вызывало опасение количество информации, отправляемой в виде открытого текста во время рукопожатия. Очевидно, что это небезопасно, поэтому чем больше шагов рукопожатия происходит в зашифрованном виде, тем лучше.

В рукопожатии TLS 1.2 этапы согласования не были защищены, вместо этого использовалась простая MAC-функция, чтобы никто не вмешался в передачу. В этап согласования входят сообщения «Client Hello» и «Server Hello».

MAC-функция действует как индикатор, но не даёт никаких гарантий безопасности. Возможно, вы слышали об атаке, которая вынуждает стороны использовать менее безопасные протоколы и функции (downgrade attack). Если и сервер, и клиент поддерживают устаревшие шифронаборы — информацию об этом легко получить, прослушивая соединение, — злоумышленник может изменить шифрование, выбранное сервером, на более слабое.

Рукопожатие TLS 1.3 использует цифровую подпись на ранних стадиях соединения, что делает его более безопасным и защищает от атак, меняющих шифронабор. Подпись также позволяет быстрее и эффективнее аутентифицировать сервер.

Теперь посмотрим, как эти обновления для рукопожатия TLS 1.3 будут реализованы во всех трёх основных функциях самого рукопожатия SSL/TLS.

История версий сертификатов шифрования

Всегда нужно знать историю, как сертификат шифрования эволюционировал и какие у него выходили версии. Так как зная это и принцип работы, будет проще искать решение проблем.

  • SSL 1.0 > данная версия в народ так и не попала, причины, возможно нашли его уязвимость
  • SSL 2.0 > эта версия ssl сертификата была представлена в 1995 году, на стыке тысячелетий, она так же была с кучей дыр безопасности, сподвигнувшие компанию Netscape Communications к работе над третье версией сертификата шифрования
  • SSL 3.0 > пришел на смену SSL 2.0 в 1996 году.  Стало это чудо развиваться и в 1999 году крупные компании Master Card и Visa купили коммерческую лицензию на его использование. Из 3.0 версии появился  TLS 1.0
  • TLS 1.0 > 99 год, выходит обновление SSL 3.0 под названием TLS 1.0, проходит еще семь лет, интернет развивается и хакеры не стоят на месте, выходит следующая версия.
  • TLS 1.1 > 04.2006  это его отправная точка, было исправлено несколько критичных ошибок обработки, а так же появилась защита от атак, где делался режим сцепления блоков шифротекста
  • TLS 1.2 > появился в августе 2008
  • TLS 1.3 > появится в конце 2021 года

Назначение domain validation — dv

И так сертификаты шифрования, подтверждающие только домен ресурса, это самые распространенные в сети сертификаты, их делают всех быстрее, автоматически. Когда вам нужно проверить такой сертификат безопасности, отправляется email с гиперссылкой, кликая по которой подтверждается выпуск серта.

approver email так же имеет требования, логично, что если вы заказываете сертификаты шифрования для домена, то и электронный ящик должен быть из него, а не mail или rambler, либо он должен быть указан в whois домена и еще одно требование название approver email, должно быть по такому шаблону:

Я обычно беру ящик postmaster@ваш домен

Сертификат tls-ssl подтверждающие доменное имя выпускаются, когда CA произвел валидацию того, что заказчик обладает правами на доменное имя, все остальное, что касается организации в сертификате не отображается.

Обмен ключами в рукопожатии tls 1.3

В рукопожатии TLS 1.3 из-за ограниченного выбора схем обмена ключами клиент может успешно угадать схему и отправить свою часть общего ключа во время начального этапа (Client Hello) рукопожатия.

RSA была не единственной схемой обмена ключами, которая была удалена в TLS 1.3. Неэфемерные схемы Диффи-Хеллмана тоже были ликвидированы, как и перечень недостаточно безопасных параметров Диффи-Хеллмана.

Что имеется в виду под недостаточно безопасными параметрами? Не углубляясь в математику, сложность Диффи-Хеллмана и большинства криптосистем с открытым ключом — это сложность решения задач дискретного логарифма. Криптосистема должна быть достаточно сложной для вычисления, если неизвестны входные параметры (случайные числа клиента и сервера), иначе вся схема окажется бесполезной. Схемы Диффи-Хеллмана, которые не могли обеспечить достаточно большие параметры, были исключены в TLS 1.3.

  1. В начале рукопожатия TLS 1.3, зная, что будет использоваться DHE-схема соглашения о ключах, клиент включает свою часть общего ключа на основе предполагаемой схемы обмена ключами в своё сообщение «Client Hello».
  2. Сервер получает эту информацию и, если клиент угадал, возвращает свою часть общего ключа в «Server Hello».
  3. Клиент и сервер вычисляют сеансовый ключ.

Это очень похоже на то, что происходит с DH в рукопожатии TLS 1.2, кроме того, что в TLS 1.3 обмен ключами происходит раньше.

Сертификаты бывают разные

Теперь, когда мы разобрались, что представляет собой протокол SSL/TLS и как происходит соединений на его основе, можно поговорить и о

сертификатов.

Domain Validation, или сертификаты с проверкой домена, подходят для некоммерческих сайтов, так как они подтверждают только веб-сервер, обслуживающий определенный сайт, на который был осуществлен переход. Этот вид сертификата самый дешевый и популярный, но не может считаться полностью безопасным, так как содержит только информацию о зарегистрированном доменном имени.

Organization Validation, или сертификаты с проверкой организации, являются более надежными, так как подтверждают еще регистрационные данные компании-владельца. Эту информацию юридическое лицо обязано предоставить при покупке сертификата, а удостоверяющий центр может связаться напрямую с компанией для подтверждения этой информации.

Extended Validation, или сертификат с расширенной проверкой, считается самым надежным. Собственно, зеленый замочек или ярлык в браузере означает как раз то, что у сайта есть именно такой сертификат. О том, как разные браузеры информируют пользователей о наличии сертификата или возникающих ошибках можно почитать тут.

Он нужен веб-сайтам, которые проводят финансовые транзакции и требуют высокий уровень конфиденциальности. Однако многие сайты предпочитают перенаправлять пользователей для совершения платежей на внешние ресурсы, подтвержденные сертификатами с расширенной проверкой, при этом используя сертификаты OV, которых вполне хватает для защиты остальных данных пользователей.

Кроме того, сертификаты могут различаться в зависимости от количества доменов, на которые они были выданы. Однодоменные сертификаты (Single Certificate) привязываются к одному домену, который указывается при покупке. Мультидоменные сертификаты (типа Subject Alternative Name, Unified Communications Certificate, Multi Domain Certificate) будут действовать уже для большего числа доменных имен и серверов, которые также определяются при заказе. Однако за включение дополнительных доменов, свыше определенной нормы, потребуется платить отдельно.

Еще существуют поддоменные сертификаты (типа WildCard), которые охватывают все поддомены указанного при регистрации доменного имени. Иногда могут потребоваться сертификаты, которые будут одновременно включать не только несколько доменов, но и поддомены.

В таких случаях можно приобрести сертификаты типа Comodo PositiveSSL Multi-Domain Wildcard и Comodo Multi-Domain Wildcard SSL или (лайфхак) обычный мультидоменный сертификат, где в списке доменов указать также и нужные поддоменные имена.

Про сертификаты:  Жесткий диск SEAGATE SkyHawk AI 10 Тб ST10000VE0008 SATA — купить, цена и характеристики, отзывы

Получить SSL-сертификат можно и самостоятельно: пара ключей для этого генерируется через любой генератор, например, бесплатный OpenSSL. И такой защищенный канал связи вполне получится использовать для внутренних целей: между устройствами своей сети или приложениями.

Но вот для использования на веб-сайте сертификат необходимо приобретать официально, чтобы в цепочке подтверждения сертификатов обязательно имелся корневой сертификат, браузеры не показывали сообщений о небезопасном соединении, а пользователи были спокойны за свои данные.

P.S. Дополнительно по теме из блога IaaS-провайдера 1cloud:

Сокращение шифронаборов

Никто никогда не собирался использовать 37 наборов для шифрования данных, так эволюционировал протокол. Каждый раз, когда добавлялся новый алгоритм, добавлялись новые комбинации, и вскоре IANA администрировала 37 различных шифронаборов.

Это плохо по двум причинам:

  1. Такая варьируемость приводит к ошибочным конфигурациям, которые делают интернет-пользователей уязвимыми для известных эксплойтов.
  2. Это сделало настройку SSL более запутанной.

IETF исключил в TLS 1.3 поддержку всех алгоритмов, кроме самых безопасных, убирая путаницу за счёт ограничения выбора. В частности, был убран выбор метода обмена ключами. Эфемерная схема Диффи-Хеллмана стала единственным способом, позволяющим клиенту отправить информацию о своём ключе вместе с «Client Hello» в первой части рукопожатия. Шифрование RSA было полностью удалено вместе со всеми другими схемами обмена статическими ключами.

При этом есть одна потенциальная ахиллесова пята в TLS 1.3.

Установка соединения ssl/tls на уровне сетевых пакетов

На иллюстрации, черные стрелки показывают сообщения, которые отправляются открытым текстом, синие – это сообщения, подписанные открытым ключом, а зеленые – это сообщения, отправленные с помощью шифрования объёмных данных и того MAC, о которых стороны договорились в процессе переговоров.

Ну и подробно про каждый этап обмена сетевых сообщений протоколов SSL/TLS.

  • 1. ClientHello > пакет ClientHello делает предложение со списком поддерживаемых версий протоколов, поддерживаемые наборы шифров в порядке предпочтения и список алгоритмов сжатия (обычно NULL). Еще от клиента приходит случайное значение 32 байта, его содержимое указывает отметку текущего времени, его позже будут использовать для симметричного ключа и идентификатора сессии, который будет иметь значение ноль, при условии, что не было предыдущих сессий.
  • 2. ServerHello > пакет  ServerHello, отсылается сервером, в данном сообщении идет выбранный вариант, алгоритма шифрования и сжатия. Тут так же будет случайное значение 32 байта (отметка текущего времени), его также используют для симметричных ключей. Если ID текущей сессии в ServerHello имеет значение ноль, то создаст и вернёт идентификатор сессии.  Если в сообщении ClientHello был предложен идентификатор предыдущей сессии, известный данному серверу, то протокол рукопожатия будет проведён по упрощённой схеме. Если клиент предложил неизвестный серверу идентификатор сессии, сервер возвращает новый идентификатор сессии и протокол рукопожатия проводится по полной схеме.
  • 3.Certificate (3) > в данном пакете сервер отправляет клиенту свой открытый ключ (сертификат X.509), он совпадает с алгоритмом обмена ключами в выбранном наборе шифров. Вообще можно сказать в протоколе, запроси открытый ключ в DNS, запись типа KEY/TLSA RR. Как я писал выше этим ключом будет шифроваться сообщение.
  • 4. ServerHelloDone > Сервер говорит, что сессия установилось нормально.
  • 5. ClientKeyExchange > Следующим шагом идет отсылка клиентом ключа pre-master key, используя случайные числа (или отметки текущего времени) сервера и клиента. Данный ключ (pre-master key) как раз и шифруется открытым ключом сервера. Данное сообщение может расшифровать только сервер, с помощью закрытого ключа. Теперь оба участника вычисляют общий секретный ключ master key из ключа pre-master.
  • 6. ChangeCipherSpec — клиент > смысл пакета, указать на то, что теперь весь трафик, который идет от клиента, будет шифроваться, с помощью выбранного алгоритма шифрования объёмных данных и будет содержать MAC, вычисленный по выбранному алгоритму.
  • 7. Finished — клиент > Это сообщение содержит все сообщения, отправленные и полученные во время протокола рукопожатия, за исключением сообщения Finished. Оно шифруется с помощью алгоритма шифрования объемных данных и хэшируется с помощью алгоритма MAC, о которых договорились стороны. Если сервер может расшифровать и верифицировать это сообщение (содержащее все предыдущие сообщения), используя независимо вычисленный им сеансовый ключ, значит диалог был успешным. Если же нет, на этом месте сервер прерывает сессию и отправляет сообщение Alert с некоторой (возможно, неконкретной) информацией об ошибке
  • 8. ChangeCipherSpec — сервер > пакет, говорит, что теперь весь исходящий трафик с данного сервера, будет шифроваться.
  • 9.Finished — сервер > Это сообщение содержит все сообщения, отправленные и полученные во время протокола рукопожатия, за исключением сообщения Finished
  • 10. Record Protocol (протокол записи) > теперь все сообщения шифруются ssl сертификатом безопасности

Хеш и mac


Цель хеш-алгоритма —

все содержимое SSL-сертификата в битовую строку фиксированной длины. Для шифрования значения хеша применяется закрытый ключ центра сертификации, который включается в сертификат как подпись.

Хеш-алгоритм также использует величину, необходимую для проверки целостности передаваемых данных — MAC (message authentication code). MAC использует функцию отображения, чтобы представлять данные сообщения как фиксированное значение длины, а затем хеширует сообщение.

В протоколе TLS применяется HMAC (hashed message authentication code), который использует хеш-алгоритм сразу с общим секретным ключом. Здесь ключ прикрепляется к данным, и для подтверждения их подлинности обе стороны должны использовать одинаковые секретные ключи, что обеспечивает большую безопасность.

Все алгоритмы шифрования сегодня поддерживают алгоритм хеширования SHA2, чаще всего именно SHA-256. SHA-512 имеет похожую структуру, но в нем длина слова равна 64 бита (вместо 32), количество раундов в цикле равно 80 (вместо 64), а сообщение разбивается на блоки по 1024 бита (вместо 512 бит). Раньше для тех же целей применялся алгоритм SHA1 и MD5, но сегодня они считаются уязвимыми.

Разговоры об отказе от SHA1 велись достаточно давно, но в конце февраля алгоритм был официально взломан. Исследователям удалось добиться коллизии хешей, то есть одинакового хеша для двух разных файлов, что доказало небезопасность использования алгоритма для цифровых подписей.

Шифронаборы tls 1.3

  • TLS — протокол.
  • AES 256 GCM — алгоритм аутентифицированного шифрования с присоединёнными данными (AEAD).
  • SHA384 — алгоритм функции формирования хешированного ключа (HKFD).

Мы уже знаем, что будем использовать какую-то версию обмена эфемерными ключами Диффи-Хеллмана, но не знаем параметров, так что первые два алгоритма в шифронаборе TLS 1.2 больше не нужны. Эти функции всё ещё выполняются, их просто больше не нужно согласовывать во время рукопожатия.

Из приведённого выше примера видно, что используется AES (Advanced Encryption Standard) для шифрования большого объёма данных. Он работает в режиме счётчика Галуа с использованием 256-битных ключей.

Вот пять шифронаборов, которые поддерживаются в TLS 1.3:

  • TLS_AES_256_GCM_SHA384;
  • TLS_CHACHA20_POLY1305_SHA256;
  • TLS_AES_128_GCM_SHA256;
  • TLS_AES_128_CCM_8_SHA256;
  • TLS_AES_128_CCM_SHA256.
Оцените статью
Мой сертификат
Добавить комментарий